Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Microbiol Spectr ; : e0432323, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687078

RESUMO

An investigation into retrovirus was conducted in six species of bats (Myotis aurascens, Myotis petax, Myotis macrodactylus, Miniopterus fuliginosus, Rhinolophus ferrumequinum, and Pipistrellus abramus) inhabiting South Korea. Exogenous retroviruses (XRVs) were detected in the tissue samples of R. ferrumequinum individuals by PCR assay. Proviruses were identified in all tissue samples through viral quantification using a digital PCR assay per organ (lung, intestine, heart, brain, wing, kidney, and liver), with viral loads varying greatly between each organ. In phylogenetic analysis based on the whole genome, the Korean bat retroviruses and the R. ferrumequinum retrovirus (RfRV) strain formed a new clade distinct from the Gammaretrovirus clade. The phylogenetic results determined these viruses to be RfRV-like viruses. In the Simplot comparison, Korean RfRV-like viruses exhibited relatively strong fluctuated patterns in the latter part of the envelope gene area compared to other gene areas. Several point mutations within this region (6,878-7,774 bp) of these viruses were observed compared to the RfRV sequence. One Korean RfRV-like virus (named Y4b strain) was successfully recovered in the Raw 264.7 cell line, and virus particles replicated in the cells were confirmed by transmission electron microscopy. RfRVs (or RfRV-like viruses) have been spreading since their first discovery in 2012, and the Korean RfRV-like viruses were assumed to be XRVs that evolved from RfRV.IMPORTANCER. ferrumequinum retrovirus (RfRV)-like viruses were identified in greater horseshoe bats in South Korea. These RfRV-like viruses were considered exogenous retroviruses (XRVs) that emerged from RfRV. Varying amounts of provirus detected in different organs suggest ongoing viral activity, replication, and de novo integration in certain organs. Additionally, the successful recovery of the virus in the Raw 264.7 cell line provides strong evidence supporting their status as XRVs. These viruses have now been identified in South Korea and, more recently, in Kenya since RfRV was discovered in China in 2012, indicating that RfRVs (or RfRV-like viruses) have spread worldwide.

2.
Vaccine ; 42(6): 1392-1400, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38320930

RESUMO

Human noroviruses (HuNoVs) are highly contagious and a leading cause of epidemics of acute gastroenteritis worldwide. Among the various HuNoV genotypes, GII.4 is the most prevalent cause of outbreaks. However, no vaccines have been approved for HuNoVs to date. DNA vaccines are proposed to serve as an ideal platform against HuNoV since they can be easily produced and customized to express target proteins. In this study, we constructed a CMV/R vector expressing a major structural protein, VP1, of GII.4 HuNoV (CMV/R-GII.4 HuNoV VP1). Transfection of CMV/R-GII.4 HuNoV VP1 into human embryonic kidney 293T (HEK293T) cells resulted in successful expression of VP1 proteins in vitro. Intramuscular or intradermal immunization of mice with the CMV/R-GII.4 HuNoV VP1 construct elicited the production of blocking antibodies and activation of T cell responses against GII.4 HuNoV VP1. Our collective data support the utility of CMV/R-GII.4 HuNoV VP1 as a promising DNA vaccine candidate against GII.4 HuNoV.


Assuntos
Infecções por Caliciviridae , Infecções por Citomegalovirus , Norovirus , Vacinas de DNA , Humanos , Animais , Camundongos , Linfócitos T , Anticorpos Bloqueadores , Norovirus/genética , Células HEK293 , Formação de Anticorpos
3.
Exp Mol Med ; 56(3): 570-582, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424191

RESUMO

Anti-tuberculosis (AT) medications, including isoniazid (INH), can cause drug-induced liver injury (DILI), but the underlying mechanism remains unclear. In this study, we aimed to identify genetic factors that may increase the susceptibility of individuals to AT-DILI and to examine genetic interactions that may lead to isoniazid (INH)-induced hepatotoxicity. We performed a targeted sequencing analysis of 380 pharmacogenes in a discovery cohort of 112 patients (35 AT-DILI patients and 77 controls) receiving AT treatment for active tuberculosis. Pharmacogenome-wide association analysis was also conducted using 1048 population controls (Korea1K). NAT2 and ATP7B genotypes were analyzed in a replication cohort of 165 patients (37 AT-DILI patients and 128 controls) to validate the effects of both risk genotypes. NAT2 ultraslow acetylators (UAs) were found to have a greater risk of AT-DILI than other genotypes (odds ratio [OR] 5.6 [95% confidence interval; 2.5-13.2], P = 7.2 × 10-6). The presence of ATP7B gene 832R/R homozygosity (rs1061472) was found to co-occur with NAT2 UA in AT-DILI patients (P = 0.017) and to amplify the risk in NAT2 UA (OR 32.5 [4.5-1423], P = 7.5 × 10-6). In vitro experiments using human liver-derived cell lines (HepG2 and SNU387 cells) revealed toxic synergism between INH and Cu, which were strongly augmented in cells with defective NAT2 and ATP7B activity, leading to increased mitochondrial reactive oxygen species generation, mitochondrial dysfunction, DNA damage, and apoptosis. These findings link the co-occurrence of ATP7B and NAT2 genotypes to the risk of INH-induced hepatotoxicity, providing novel mechanistic insight into individual AT-DILI susceptibility. Yoon et al. showed that individuals who carry NAT2 UAs and ATP7B 832R/R genotypes are at increased risk of developing isoniazid hepatotoxicity, primarily due to the increased synergistic toxicity between isoniazid and copper, which exacerbates mitochondrial dysfunction-related apoptosis.


Assuntos
Arilamina N-Acetiltransferase , Doença Hepática Induzida por Substâncias e Drogas , Doenças Mitocondriais , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Antituberculosos/toxicidade , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Cobre/toxicidade , Genótipo , Isoniazida/toxicidade , Tuberculose/tratamento farmacológico , Tuberculose/genética
4.
J Med Virol ; 96(1): e29361, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38178612

RESUMO

Early and accurate detection of viruses in children might help prevent transmission and severe diseases. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) detection in children was evaluated using saliva specimens with a Proteinase K (PTK)-based RNA preparation, as saliva collection is a simple and noninvasive procedure, even in young children, with fewer concerns about sample contamination. The saliva-based PTK and the conventional paired nasopharyngeal aspiration (NPA)-based detection methods were compared between COVID-19-positive and -negative children. In addition, the detection rate for SARS-COV-2 and the difference between admission and discharge by the saliva-based PTK method was tested in COVID-19 patients. The diagnostic accuracy of the saliva-based PTK method was 98.8% compared to NP swab-based reverse transcriptase polymerase chain reaction. Saliva samples showed high sensitivity (94.1%) and specificity (100%) when using the PTK method. Furthermore, the saliva-based PTK method significantly reduced the test processing time by 2 h. Notably, Ct values at discharge increased in saliva samples compared with those at admission, which might indicate patients' clinical conditions or virus activity. In conclusion, the saliva-based PTK implemented in this study streamlines RNA extraction, making the process faster, safer, and more cost-effective, demonstrating that this method is a rapid and reliable diagnostic tool for SARS-CoV-2 detection in children.


Assuntos
COVID-19 , Saliva , Criança , Humanos , Pré-Escolar , SARS-CoV-2/genética , Endopeptidase K , COVID-19/diagnóstico , RNA , Manejo de Espécimes , Nasofaringe , Teste para COVID-19
5.
Vet Sci ; 10(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37505820

RESUMO

This study applied a molecular-based method to detect parainfluenza virus 5 (PIV5) collected from 2016 to 2018 in nine provinces of Republic of Korea. We demonstrated that PIV5 was detectable in both serum and pooled organs at an average positive rate of 1.78% (99/5566). Among these, the complete genome sequence of 15,246 nucleotides was obtained for 12 field strains. Three out of the 12 strains had the lowest genetic identity (96.20-96.68%) among the 21 porcine PIV5 genomes collected in Germany, China, India, and Republic of Korea from 1998 to 2017. By analyzing a large collection of complete genome sequences of the structural protein-coding F and HN genes, this study proposed a classification of PIV5 into two lineages, 1 and 2, and identified that group 2.2.2 within sub-lineage 2.2 was substantially divergent. The evolution of two structural protein-coding genes was largely under purifying selection. A few codons (6/9 for the F gene, 7/8 for the HN gene) had elevated dN/dS values, which were loaded on internal branches and were predicted to be related to beneficial trait(s) of the virus.

7.
J Control Release ; 351: 1003-1016, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216176

RESUMO

The standard process for manufacturing microneedles containing API requires a way to process the API, including dissolving the API in a co-solvent and a drying process. In this study, the authors introduce a novel microneedle system that involves physically attaching API particles to the biocompatible adhesive surface of the microneedles. To manufacture particle-attached microneedles, an adhesive surface was prepared by coating polydimethylsiloxane (PDMS) mixed with an elastomer base and a curing agent at a ratio of 40:1 (PDMS40) onto polylactic acid microneedles (PLA), and then attaching ovalbumin (OVA) particles with a mean diameter of 10 µm to the PDMS adhesive layer. The OVA particles were delivered for 5 min into porcine skin with a delivery efficiency of 93% ex vivo and into mouse skin with a delivery efficiency of over 90% in vivo. Finally, mouse experiments with OVA particle-attached microneedles showed a value of OVA antibody titer similar to that produced by intramuscular administration. Particle-attached microneedles are a novel microneedle system with a dry coating process and rapid API delivery into the skin. Particle-attached microneedles can provide a wide range of applications for administering drugs and vaccines.


Assuntos
Agulhas , Vacinas , Suínos , Camundongos , Animais , Ovalbumina , Pele , Imunidade Celular , Sistemas de Liberação de Medicamentos , Microinjeções , Administração Cutânea
8.
Cell Rep ; 40(3): 111117, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35839776

RESUMO

As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) delivers its viral genome into host cells via fusion of the viral and cell membranes. Here, we show that ANO6/TMEM16F-mediated cell surface exposure of phosphatidylserine is critical for SARS-CoV-2 entry and that ANO6-selective inhibitors are effective against SARS-CoV-2 infections. Application of the SARS-CoV-2 Spike pseudotyped virus (SARS2-PsV) evokes a cytosolic Ca2+ elevation and ANO6-dependent phosphatidylserine externalization in ACE2/TMPRSS2-positive mammalian cells. A high-throughput screening of drug-like chemical libraries identifies three different structural classes of chemicals showing ANO6 inhibitory effects. Among them, A6-001 displays the highest potency and ANO6 selectivity and it inhibits the single-round infection of SARS2-PsV in ACE2/TMPRSS2-positive HEK 293T cells. More importantly, A6-001 strongly inhibits authentic SARS-CoV-2-induced phosphatidylserine scrambling and SARS-CoV-2 viral replications in Vero, Calu-3, and primarily cultured human nasal epithelial cells. These results provide mechanistic insights into the viral entry process and offer a potential target for pharmacological intervention to protect against coronavirus disease 2019 (COVID-19).


Assuntos
Tratamento Farmacológico da COVID-19 , Enzima de Conversão de Angiotensina 2 , Animais , Anoctaminas , Humanos , Mamíferos/metabolismo , Fosfatidilserinas , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2 , Internalização do Vírus
9.
Sci Rep ; 12(1): 12189, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842468

RESUMO

Due to the continuously mutating nature of the H3N2 virus, two aspects were considered when preparing the H3N2 microneedle vaccines: (1) rapid preparation and (2) cross-protection against multiple antigenic variants. Previous methods of measuring hemagglutinin (HA) content required the standard antibody, thus rapid preparation of H3N2 microneedle vaccines targeting the mutant H3N2 was delayed as a result of lacking a standard antibody. In this study, H3N2 microneedle vaccines were prepared by high performance liquid chromatography (HPLC) without the use of an antibody, and the cross-protection of the vaccines against several antigenic variants was observed. The HA content measured by HPLC was compared with that measured by ELISA to observe the accuracy of the HPLC analysis of HA content. The cross-protection afforded by the H3N2 microneedle vaccines was evaluated against several antigenic variants in mice. Microneedle vaccines for the 2019-20 seasonal H3N2 influenza virus (19-20 A/KS/17) were prepared using a dip-coating process. The cross-protection of 19-20 A/KS/17 H3N2 microneedle vaccines against the 2015-16 seasonal H3N2 influenza virus in mice was investigated by monitoring body weight changes and survival rate. The neutralizing antibody against several H3N2 antigenic variants was evaluated using the plaque reduction neutralization test (PRNT). HA content in the solid microneedle vaccine formulation with trehalose post-exposure at 40℃ for 24 h was 48% and 43% from the initial HA content by HPLC and ELISA, respectively. The vaccine was administered to two groups of mice, one by microneedles and the other by intramuscular injection (IM). In vivo efficacies in the two groups were found to be similar, and cross-protection efficacy was also similar in both groups. HPLC exhibited good diagnostic performance with H3N2 microneedle vaccines and good agreement with ELISA. The H3N2 microneedle vaccines elicited a cross-protective immune response against the H3N2 antigenic variants. Here, we propose the use of HPLC for a more rapid approach in preparing H3N2 microneedle vaccines targeting H3N2 virus variants.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Camundongos
10.
Adv Sci (Weinh) ; 9(24): e2105320, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748162

RESUMO

Under ER stress conditions, the ER form of transmembrane proteins can reach the plasma membrane via a Golgi-independent unconventional protein secretion (UPS) pathway. However, the targeting mechanisms of membrane proteins for UPS are unknown. Here, this study reports that TMED proteins play a critical role in the ER stress-associated UPS of transmembrane proteins. The gene silencing results reveal that TMED2, TMED3, TMED9 and TMED10 are involved in the UPS of transmembrane proteins, such as CFTR, pendrin and SARS-CoV-2 Spike. Subsequent mechanistic analyses indicate that TMED3 recognizes the ER core-glycosylated protein cargos and that the heteromeric TMED2/3/9/10 complex mediates their UPS. Co-expression of all four TMEDs improves, while each single expression reduces, the UPS and ion transport function of trafficking-deficient ΔF508-CFTR and p.H723R-pendrin, which cause cystic fibrosis and Pendred syndrome, respectively. In contrast, TMED2/3/9/10 silencing reduces SARS-CoV-2 viral release. These results provide evidence for a common role of TMED3 and related TMEDs in the ER stress-associated, Golgi-independent secretion of transmembrane proteins.


Assuntos
COVID-19 , Regulador de Condutância Transmembrana em Fibrose Cística , Estresse do Retículo Endoplasmático , Glicoproteína da Espícula de Coronavírus , Transportadores de Sulfato , COVID-19/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte Proteico , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Proteínas de Transporte Vesicular/metabolismo
11.
Biosensors (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808752

RESUMO

A rapid and accurate on-site diagnostic test for pathogens including influenza viruses is critical for preventing the spread of infectious diseases. Two types of influenza virus, A and B cause seasonal flu epidemics, whereas type A can cause influenza pandemics. To specifically detect influenza A (IAV) and B (IBV) viruses, we developed a clustered, regularly interspaced, short palindromic repeats (CRISPR) and CRISPR-associated (Cas) system-based assay. By coupling reverse transcription recombinase polymerase amplification (RT-RPA) and reverse transcription loop-mediated isothermal amplification (RT-LAMP), a CRISPR-Cas12a DNA endonuclease-targeted CRISPR trans-reporter (DETECTR) detected IAV and IBV titers as low as 1 × 100 plaque forming units (PFUs) per reaction without exhibiting cross-reactivity. Only 75 to 85 min were required to detect IAV and IBV, depending on isothermal nucleic acid amplification methods, and results were verified using a lateral flow strip assay that does not require additional analytic equipment. Taken together, our findings establish RT-RPA and RT-LAMP-coupled DETECTR-based diagnostic tests for rapid, specific and high-sensitivity detection of IAV and IBV using fluorescence and lateral flow assays. The diagnostic test developed in this study can be used to distinguish IAV and IBV infections, a capability that is necessary for monitoring and preventing the spread of influenza epidemics and pandemics.


Assuntos
Sistemas CRISPR-Cas , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Herpesvirus Cercopitecino 1 , Humanos , Influenza Humana/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Pandemias , Transcrição Reversa , Sensibilidade e Especificidade
12.
Drug Deliv Transl Res ; 11(4): 1390-1400, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33759112

RESUMO

The oral mucosa is an effective site for vaccination. However, for oral mucosal vaccines, delivery of the right dose of vaccine is not possible due to the water-rich environment. In this study, the buccal mucosa, which is easy to access using a microneedle array in the oral cavity, was selected as the administration site. The immune responses to the use of microneedles to conventional transmucosal delivery were compared. In addition, the adjuvant effect of the addition of cholera toxin (CT) to the drug formulation was observed. Two kinds of patches were prepared: (1) Ovalbumin (OVA) was dip coated only on the tips of microneedles (C-OVA-MN) and (2) OVA was coated on the surface of a flat disk patch substrate without microneedles (C-OVA-D). The drug delivery properties of C-OVA-MN and C-OVA-D were investigated using fluorescent-labeled OVA (OVA/FITC). Each patch was administered to mice twice, 2 weeks apart, and then antibody titers were measured. A microneedle patch can deliver vaccine into the epithelium of the buccal mucosa in a short period of time compared to transmucosal delivery. A microneedle system of C-OVA-MN showed a high serum IgG titer. In addition, CT triggered CD8+ and CD4+ T cell-mediated immune responses. Through this study, we present the possibility of a new method of vaccination to the buccal mucosa using microneedles and CT adjuvant. Illustration of delivery of vaccine to the oral mucosal epithelium using a microneedle patch: Ovalbumin (OVA)-coated microneedle (C-OVA-MN) consists of tip, step, and coating formulation. Microneedle patch coated with OVA formulation is targeting buccal mucosa, which is easy to access in the oral cavity. OVA is delivered to the buccal epithelium precisely using a microneedle patch, and OVA is delivered by transmucosal route using a disk patch.


Assuntos
Toxina da Cólera , Imunização , Animais , Imunização/métodos , Camundongos , Muco , Agulhas , Ovalbumina , Vacinação/métodos
13.
Pharmaceutics ; 13(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546332

RESUMO

Although smallpox has been eradicated globally, the potential use of the smallpox virus in bioterrorism indicates the importance of stockpiling smallpox vaccines. Considering the advantages of microneedle-based vaccination over conventional needle injections, in this study, we examined the feasibility of microneedle-based smallpox vaccination as an alternative approach for stockpiling smallpox vaccines. We prepared polylactic acid (PLA) microneedle array patches by micromolding and loaded a second-generation smallpox vaccine on the microneedle tips via dip coating. We evaluated the effect of excipients and drying conditions on vaccine stability in vitro and examined immune responses in female BALB/c mice by measuring neutralizing antibodies and interferon (IFN)-γ-secreting cells. Approximately 40% of the virus titer was reduced during the vaccine-coating process, with or without excipients. At -20 °C, the smallpox vaccine coated on the microneedles was stable up to 6 months. Compared to natural evaporation, vacuum drying was more efficient in improving the smallpox vaccine stability. Microneedle-based vaccination of the mice elicited neutralizing antibodies beginning 3 weeks after immunization; the levels were maintained for 12 weeks. It significantly increased IFN-γ-secreting cells 12 weeks after priming, indicating the induction of cellular immune responses. The smallpox-vaccine-coated microneedles could serve as an alternative delivery system for vaccination and stockpiling.

14.
J Virol ; 94(24)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32967955

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness and has a high mortality of ∼34%. However, since its discovery in 2012, an effective vaccine has not been developed for it. To develop a vaccine against multiple strains of MERS-CoV, we targeted spike glycoprotein (S) using prime-boost vaccination with DNA and insect cell-expressed recombinant proteins for the receptor-binding domain (RBD), S1, S2, SΔTM, or SΔER. Our S subunits were generated using an S sequence derived from the MERS-CoV EMC/2012 strain. We examined humoral and cellular immune responses of various combinations with DNA plasmids and recombinant proteins in mice. Mouse sera immunized with SΔER DNA priming/SΔTM protein boosting showed cross-neutralization against 15 variants of S-pseudovirions and the wild-type KOR/KNIH/002 strain. In addition, these immunizations provided full protection against the KOR/KNIH/002 strain challenge in human DPP4 knock-in mice. These findings suggest that vaccination with the S subunits derived from one viral strain can provide cross-protection against variant MERS-CoV strains with mutations in S. DNA priming/protein boosting increased gamma interferon production, while protein-alone immunization did not. The RBD subunit alone was insufficient to induce neutralizing antibodies, suggesting the importance of structural conformation. In conclusion, heterologous DNA priming with protein boosting is an effective way to induce both neutralizing antibodies and cell-mediated immune responses for MERS-CoV vaccine development. This study suggests a strategy for selecting a suitable platform for developing vaccines against MERS-CoV or other emerging coronaviruses.IMPORTANCE Coronavirus is an RNA virus with a higher mutation rate than DNA viruses. Therefore, a mutation in S-protein, which mediates viral infection by binding to a human cellular receptor, is expected to cause difficulties in vaccine development. Given that DNA-protein vaccines promote stronger cell-mediated immune responses than protein-only vaccination, we immunized mice with various combinations of DNA priming and protein boosting using the S-subunit sequences of the MERS-CoV EMC/2012 strain. We demonstrated a cross-protective effect against wild-type KOR/KNIH/002, a strain with two mutations in the S amino acids, including one in its RBD. The vaccine also provided cross-neutralization against 15 different S-pseudotyped viruses. These suggested that a vaccine targeting one variant of S can provide cross-protection against multiple viral strains with mutations in S. The regimen of DNA priming/Protein boosting can be applied to the development of other coronavirus vaccines.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Proteção Cruzada , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunidade Celular , Imunização Secundária , Imunogenicidade da Vacina , Camundongos , Plasmídeos/administração & dosagem , Plasmídeos/genética , Plasmídeos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas Virais/administração & dosagem
15.
Micromachines (Basel) ; 11(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707873

RESUMO

The goal of this study is the preparation of safer coated microneedles so that tips remaining after the initial use are less likely to be reinserted on a second use. Twelve groups of uncoated microneedles (u-MNs) were prepared from the combination of three different aspect ratios (height to base width) and four kinds of polymer (polyethylene (PE), polypropylene (PP), nylon and polylactic acid (PLA)). After coating the u-MNs with polyvinyl alcohol formulation to make coated MNs (c-MNs), the force displacement of the u-MNs and the c-MNs was measured. The aspect ratio was reduced from 2.2, 2.5 and 3.0 with u-MNs to 1.3, 1.4 and 1.6 with c-MNs, respectively, after the coating formulation was applied to the MNs. All PLA MNs had a puncture performance of more than 95%. However, the puncture performance of u-MNs made of PE and of PP with a 3.0 aspect ratio was only 8% and 53%, respectively, whereas the rates of c-MNs made of PE and of PP were 82% and 95%, respectively. In animal experiments with PP MNs with a 3.0 aspect ratio, the 59% rate of puncture performance with u-MNs increased to above 96% with c-MNs and fell to 13% for r-MNs. Safe c-MNs can overcome the disadvantages of standard c-MNs by reducing the probable contamination of remaining tips after use. Safe c-MNs have advantages over standard c-MNs in terms of humidity resistance, reasonable cost, sterilization process and short processing time through the separate process of u-MN preparation and simple dip-coating.

16.
J Cancer Prev ; 25(1): 13-20, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32266175

RESUMO

Some studies have reported a decrease in the natural killer (NK) cell activity in smokers. However, large-scale data on the relationship between NK cell activity and smoking are unavailable. A cross-sectional study was performed on 12,249 asymptomatic examinees who underwent an NK cell activity test, between January 2016 and May 2017. The test quantitated the amount of interferon-γ secreted into the plasma by NK cells, using a patented stimulatory cytokine. The mean age of the study population was 39.1 years, and the proportions of "never", "former", and "current" smokers were 65.5%, 20.9%, and 13.6%, respectively. Current smokers (1,422 pg/mL) had a lower median level of NK cell activity than never smokers (1,504 pg/mL, P = 0.039) and former smokers (1,791 pg/mL, P < 0.001). Among current smokers, NK cell activity decreased with increase in the number of cigarettes smoked among current smokers (median, 1,537, 1,429, and 1,175 pg/mL at <10, 10-19, and ≥ 20 pack-years, respectively; P < 0.001). Additionally, it decreased linearly with increasing quartiles of cotinine levels (median, 1,707, 1,636, 1,348, and 1,292 pg/mL at cotinine levels < 292, 292-879, 880-1,509, and ≥ 1,510 ng/mL, respectively; r = -0.122, P < 0.001). NK cell activity was lower in current smokers. It also decreased with an increase in the number of cigarettes smoked, and it was negatively correlated with cotinine levels among current smokers. Our findings indicate a clear relationship between smoking and decreased NK cell activity.

17.
Allergy Asthma Immunol Res ; 12(2): 359-363, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32009327

RESUMO

Influenza vaccine-associated anaphylaxis is a very rare allergic reaction to vaccines, but the most concerning and life-threatening adverse reaction. Although the safety of influenza vaccines has been well documented, occasional cases of anaphylaxis in vaccinated patients have been reported. In this study, we analyzed the immunoglobulin E (IgE) response to whole influenza vaccines in a pediatric case of delayed-onset anaphylaxis after influenza vaccination. The patient showed elevated specific IgE levels against whole influenza vaccines, especially with split virion from egg-based manufacturing process. Specific IgE levels to influenza vaccines showed decreased over. We evaluated a causal relationship between influenza vaccine and anaphylaxis event by enzyme-linked immunosorbent assay. Delayed-onset anaphylaxis after influenza vaccination can occur in children without predisposing allergic diseases. In addition, the results suggested that formulation and production system of influenza vaccines could affect the probability of severe allergic reaction to vaccines.

18.
Pharm Res ; 37(3): 50, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034526

RESUMO

AIMS: Crosslinked hyaluronic acid (X-linked HA) is not suitable for making microneedles because of the low fluidity of X-linked HA hydrogel. Microneedles were fabricated using X-linked HA nanoparticles (X-linked HA-NPs) to utilize the sustained drug delivery capability of X-linked HA-NPs and to obtain the processability advantages of X-linked HA. METHOD: The puncture performance of a microneedle array patch (MAP) made of crosslinked hyaluronic acid nanoparticles (X-linked HA-NP-MAP) was evaluated by insertion in vitro into porcine skin. After a predetermined attachment time, the remaining height of the X-linked HA-NP-MAP was measured to determine the dissolution rate. X-linked HA-NP-MAP and free HA-MAP containing Rhodamine B isothiocyanate-dextran were administered into the back skin of mice, and the relative fluorescent intensity in the back skin was measured over time. RESULTS: The puncture performance of the X-linked HA-NP-MAP was over 90%. The diameter of redispersed X-linked HA-NPs was same as that of the premolded X-linked HA-NPs. The dissolution rate was not different from that of free HA-MAP. In an in vivo experiment, X-linked HA-NP-MAP was administered into the mouse's back skin successfully and the relative fluorescent intensity of X-linked HA-NP-MAP lasted longer than that of HA-MAP. CONCLUSION: X-linked HA-NPs provide the biocompatibility, the processability of micromolding, sustained drug release, successful penetration into the skin, and relatively short insertion time for full disintegration of NPs in the skin. X-linked HA-NP-MAP can be used for various applications that require several days of sustained drug release.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Nanopartículas/química , Administração Cutânea , Animais , Liberação Controlada de Fármacos , Ácido Hialurônico/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Agulhas , Punções/métodos , Pele , Suínos
19.
Drug Deliv Transl Res ; 10(3): 791-800, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31974729

RESUMO

The dissolution rate of a microneedle array patch (MAP) determines how long a MAP must remain attached to the skin (often called "wear time"). In this study, the dissolution rate of a MAP was increased, not by changing the drug formulation but by employing an infrared (IR) device that is widely used for hospital treatment and in-home therapy. A MAP with microneedles 480 µm in height was prepared using hyaluronic acid (HA). Changes in transepidermal water loss (TEWL), the surface temperature of the skin, and the dissolution rate of the MAP tips with IR irradiation were evaluated on human skin in vivo. Time for recovery from erythema that occurred after MAP attachment and IR irradiation was also evaluated. TEWL increased more than fourfold with IR irradiation. Water that evaporated as a result of IR irradiation was trapped in the skin layer by the patch, resulting in the increased dissolution rate of the MAP tips. After 10 min of IR irradiation, the height of the dissolving tips compared with their initial height increased from 41 to 56%, and the dissolved volume of the tips compared with their initial volume increased from 7 to 18%. During the 10 min of irradiation, the skin surface temperature rose from 32 to 40 °C. Erythema occurred in the early stage of treatment with IR irradiation and MAP attachment, but it abated within 2 h after removal of the MAP and cessation of IR irradiation. Through this study, it was possible to shorten the administration time of MAPs by using an IR device that could be easily accessed. This method can be applied to various types of MAPs in order to reduce the time that the MAPs must remain attached to the skin without changing the drug formulation. Graphical abstract The increase in dissolution rate of dissolving microneedle array patch (MAP) as a result of infrared radiation. a Water-soluble tips of MAP dissolved in water in skin without infrared irradiation. Dotted line indicates the initial dissolving microneedles. b Water in skin and subcutaneous layer evaporated actively with infrared irradiation and was stored under patch of MAP. Increased amount of water in skin induced faster dissolution of MAP tips.


Assuntos
Eritema/etiologia , Ácido Hialurônico/administração & dosagem , Raios Infravermelhos/efeitos adversos , Adulto , Feminino , Humanos , Ácido Hialurônico/química , Masculino , Microinjeções/instrumentação , Solubilidade , Adesivo Transdérmico
20.
Virus Res ; 278: 197863, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31945421

RESUMO

Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes severe pulmonary infection, with ∼35 % mortality. Spike glycoprotein (S) of MERS-CoV is a key target for vaccines and therapeutics because S mediates viral entry and membrane-fusion to host cells. Here, four different S subunit proteins, receptor-binding domain (RBD; 358-606 aa), S1 (1-751 aa), S2 (752-1296 aa), and SΔTM (1-1296 aa), were generated using the baculoviral system and immunized in mice to develop neutralizing antibodies. We developed 77 hybridomas and selected five neutralizing mAbs by immunization with SΔTM against MERS-CoV EMC/2012 strain S-pseudotyped lentivirus. However, all five monoclonal antibodies (mAb) did not neutralize the pseudotyped V534A mutation. Additionally, one mAb RBD-14F8 did not show neutralizing activity against pseudoviruses with amino acid substitution of L506 F or D509 G (England1 strain, EMC/2012 L506 F, and EMC/2012 D509 G), and RBD-43E4 mAb could not neutralize the pseudotyped I529 T mutation, while three other neutralizing mAbs showed broad neutralizing activity. This implies that the mutation in residue 506-509, 529, and 534 of S is critical to generate neutralization escape variants of MERS-CoV. Interestingly, all five neutralizing mAbs have binding affinity to RBD, although most mAbs generated by RBD did not have neutralizing activity. Additionally, chimeric antibodies of RBD-14F8 and RBD-43E4 with human Fc and light chain showed neutralizing effect against wild type MERS-CoV KOR/KNIH/002, similar to the original mouse mAbs. Thus, our mAbs can be utilized for the identification of specific mutations of MERS-CoV.


Assuntos
Anticorpos Monoclonais/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Linhagem Celular , Proteção Cruzada , Epitopos , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Mutação , Testes de Neutralização , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA